2 мембранные органоиды. Мембранные органоиды клетки

Органоиды клетки – Биология Егэ

2 мембранные органоиды.  Мембранные органоиды клетки

ТЕСТ «Строение клетки»

1 Система плоских цистерн с отходящими от них трубочками, заканчивающимися пузырьками, – это

1) ядро2) митохондрия3) клеточный центр

4) комплекс  Гольджи

2. Строение и функции плазматической мембраны обусловлены входящими в её состав молекулами

1) гликогена и крахмала2) ДНК и АТФ3) белков и липидов

4) клетчатки и глюкозы

3.Главным компонентом ядра являются

1) рибосомы
2) хромосомы
3) митохондрии
4) хлоропласты

4. К одномембранным органоидам клетки относят

1) клеточный центр2) митохондрии3) хлоропласты

4) лизосомы

5.В состав рибосомы входят

1) многочисленные кристы2) системы гран3) цистерны и полости

4) большая и малая частицы

6. В какой части клетки располагаются органоиды и ядро

1) в вакуолях2) в цитоплазме3) в эндоплазматической сети

4) в комплексе Гольджи

7.Хлоропласт можно узнать по наличию в нём

1) крист2) полостей и цистерн3) гран

4) ядрышек

8. Клеточный органоид, содержащий молекулу ДНК

1) рибосома2) хлоропласт3) клеточный центр

4) комплекс Гольджи

9. Большую часть зрелой растительной клетки занимают

1) вакуоли2) рибосомы3) хлоропласты

4) митохондрии

10. Какие органоиды клетки содержат молекулы хлорофилла

1)рибосомы2) пластиды3) митохондрии

4) комплекс Гольджи

11. Органические вещества в клетке перемещаются к органоидам по

1) системе вакуолей2) лизосомам3) эндоплазматической сети

4) митохондриям

12. Сходство эндоплазматической сети и комплекса Гольджи состоит в том, что в их полостях и канальцах

1) происходит синтез молекул белка2) накапливаются синтезированные клеткой вещества3) окисляются синтезированные клеткой вещества

4) осуществляется подготовительная стадия энергетического обмена

13. Гликокаликс в клетке образован

1) липидами и нуклеотидами2) жирами и АТФ3) углеводами и белками

4) нуклеиновыми кислотами

14. Какой клеточный органоид содержит ДНК

1) вакуоль2) рибосома3) хлоропласт

4) лизосома

15. Лизосомы в клетке образуются в

1) эндоплазматической сети2) митохондриях3) клеточном центре

4) комплексе Гольджи

16. Плазматическая мембрана животной клетки в отличие от клеточной стенки растений

1) состоит из клетчатки2) состоит из белков и липидов3) прочная, неэластичная

4) проницаема для всех веществ

17. Эндоплазматическая сеть образована выростами:

1) цитоплазматической мембраны2) цитоплазмы3) ядерной мембраны

4) мембраны митохондрий

18. Все органоиды клетки расположены в

1) цитоплазме2) комплексе Гольджи3) ядре

4) эндоплазматической сети

19.Комплекс Гольджи в клетке можно распознать по наличию в нем

1) полостей и цистерн с пузырьками на концах2) разветвленной системы канальцев3) крист на внутренней мембране

4) двух мембран, окружающих множество гран

20. Эндоплазматическую сеть можно узнать в клетке по

1) системе связанных между собой полостей с пузырьками на концах2) множеству расположенных в ней гран3) системе связанных между собой разветвленных канальцев

4) многочисленным кристам на внутренней мембране

21. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами

1) гликогена и крахмала2) ДНК и АТФ3) белков и липидов

4) клетчатки и глюкозы.

22. Митохондрии, как и лизосомы, отсутствуют в клетках

1) бактерий2) грибов3) животных

4) растений

23. Комплекс Гольджи наиболее развит в клетках

1) мышечной ткани2) нервных3) секреторных желез

4) кроветворных

24.Органоиды, состоящие из особого вида рибонуклеиновых кислот, расположенные на гранулярной эндоплазматической сети и участвующие в биосинтезе белка, это –

1) лизосомы2) митохондрии3) рибосомы

4) хлоропласты

25. В отличие от хлоропластов митохондрии

1) имеют двойную мембрану2) имеют собственную ДНК3) имеют граны

4) имеют кристы

26.К немембранным компонентам клетки относится

1) ядро2) аппарат Гольджи3) ЭПС

4) Рибосома

27. Кристы имеются в

1) вакуолях2) пластидах3) хромосомах

4) митохондриях

28. На полисомах клетки идет

1) фотосинтез2) синтез белков3) синтез АТФ

4) репликация ДНК

29. Кристы и тилакоиды – это

1) наружные мембраны митохондрий и хлоропластов2) внутренние мембранные структуры митохондрий и хлоропластов3) немембранные органоиды клетки

4) мембраны эндоплазматической сети

30. Рибосомы в клетке не принимают участия в

1) биосинтезе белка2) размещении матрицы иРНК3) сборке полипептидной цепи

4) синтезе молекул АТФ

Источник: https://www.sites.google.com/site/biologiaege/organoidy-kletki

Строение и функции органоидов клетки: таблица, как устроены и действуют двумембранные клетки

2 мембранные органоиды.  Мембранные органоиды клетки

Все живые существа состоят из клеток – элементарных и фундаментальных частиц. Чем отличаются животные от растений, из чего они состоят и каково строение и функции клетки – все это можно узнать из данной статьи.

Строение

Все живые существа (люди, животные, растения) крайне сложны по своему строению, но их объединяет одна фундаментальная часть – клетка.

Это самостоятельная биосистема, обладающая главными особенностями и свойствами живого организма, т.е. она может расти, меняться, делиться, перемещаться и приспосабливаться к окружающей среде. Кроме этого, клетки также обладают:

  • особенным строением,
  • упорядоченными структурами,
  • обменом веществ,
  • набором определенных функций.

Существует целая наука, занимающаяся изучением этих частиц – цитология. Ее задачей является изучение не только одноклеточных организмов, таких как бактерии и вирусы, но и структурных единиц больших и сложных объектов, таких как люди, растения и животные.

Общая организация их крайне похожа – они все обладают ядром, а также определенным набором органелл.

Клетки и их функции разнообразны по своим параметрам. У них разная форма и размеры, у каждой своя работа в организме. Но есть у них и общие черты – химическое строение и организационный принцип структур. Каждая молекула содержит в себе определенные органеллы или органоиды – постоянные структуры или их составные части.

Полезно знать! В организме человека всего 220 миллиардов клеток, из них около 20 миллиардов постоянных и 200 миллиардов замещаемых.

Не все еще изучено, многие вопросы касательно строения и функций этих частиц остаются открытыми и дискуссии о них продолжаются. Например, относятся ли лизосомы и вакуоли к органеллам или нет?

Классификация

Клетки классифицируют в зависимости от типа их компонентов. Как уже было сказано, каждая из них содержит определенные органеллы внутри – функциональные части, и классифицируют структурную единицу в зависимости от этих частей. Выделяют:

  1. Немембранные – внутри нет никаких органоидов, которые были бы окружены пленкой.
  2. Мембранные внутри присутствуют органоиды, которые окружены двумя или более пленками (например, митохондрии).

Мембранные в свою очередь подразделяются на:

  • одномембранные – органоиды клетки и их внутренние частицы отделены одной биологической пленкой. К ним относятся комплекс Гольджи и пр.,
  • двумембранные органоиды – у этих частей ядро скрыто за двумя пленками.

Мембрана помогает сохранить органеллу от цитоплазмы и придать ей форму, при этом они могут быть различными по своему составу из-за разного количества протеинов. Кроме них в растительных молекулах встречается и целлюлозная оболочка (стенка), которая расположена с внешней стороны единицы, выполняющая опорную функцию.

Органеллы

Органоиды – это постоянные составляющие, которые пребывают в плазме клетки, благодаря им она может существовать, быть целой и выполнять свои заложенные природой обязанности. К таким частицам относятся:

  • хромосомы,
  • комплекс Гольджи,
  • структуры, образующие цитоскелет,
  • рибосомы,
  • лизосомы.

А вот ядро органеллой не является, точно так же как перепонки с ресничками и жгутиками.

Органоиды животной клетки также содержат микрофибриллы, а органоиды растительной клетки пластиды.

Сам по себе состав органоидов отличный, т.е. у каждой свой, обусловлен он типом самой структурной единицы и ее ролью в организме. Цитология разделяет единицы по этому признаку на:

  1. Прокариотов – клетки, в которых нет ядра. К этому типу относятся всевозможные вирусы, бактерии и простые водоросли. В них присутствует только цитоплазма и одна хромосома (молекула ДНК).
  2. Эукариотов – клетки с ядром, которое состоит из нуклеопротеидов (белок + ДНК) и прочих органоидов. К эукариотам принадлежат все основные живые организмы.

Все вместе клеточные структуры обеспечивают эффективную и непрерывную деятельность, благодаря взаимосвязи между своими составляющими структурная частица организма получает возможность развиваться. Строение и функции органоидов клетки следует рассмотреть отдельно.

! Уроки биологии: что такое фотосинтез

Функции

Каждая отдельная частица внутри выполняет свою работу. Их взаимосвязь обеспечивает жизнедеятельность не только данного структурного подразделения, но и всего организма в целом.

ОрганоидыФункции
ЦитоскелетПринимает участие в движении цитоплазмы и мембраны. Кроме того, его составные части:

  • создают собой эластичный и прочный клеточный каркас,
  • помогают молекуле держать форму,
  • перераспределяют хромосомы,
  • обеспечивают перемещение органелл.
Эндоплазматическая сетьАктивно участвует в синтезе белковых, углеводных и липидных соединений. Основная ее функция – это перемещение полезных веществ внутри и за пределами частицы.
Мембрана из плазмыЗанимается доставкой воды, а также минералов и прочих полезных веществ. Также удаляет вредные продукты жизнедеятельности.
МитохондрииСинтезируют энергию.
Комплекс ГольджиПолости, которые взаимосвязаны и отделены от цитоплазмы оболочкой. Производят синтез жиров и углеводов.
ЛизосомыСодержат особые ферменты, которые позволяют быстро расщеплять сложные молекулы и собирать белок.
ЯдроУчаствует в процессе синтеза РНК, содержит важнейшие молекулы ДНК. Является главным элементом и обеспечивает жизнеспособность.
ВакуолиЗанимаются регуляции жидкости внутри структурной единицы.
ХлоропластыСодержат внутри себя хлорофилл.
Клеточный центрОн обеспечивает равномерное распределение хромосом при делении и является центром цитоскелета.

Живой организм, какой бы большой он не был, состоит из структурных единиц клеток, у которых довольно сложное строение. Благодаря ядру и прочим органеллам структурная единица может выполнять свои функции и развиваться как отдельный организм.

Источник: https://tvercult.ru/nauka/kak-ustroenyi-organellyi-stroenie-i-funktsii-organoidov-rastitelnoy-kletki-i-zhivotnoy

Двумембранные и одномембранные органоиды

2 мембранные органоиды.  Мембранные органоиды клетки

Определение 1

Органоиды – это функциональные части клетки, которые имеют определенное строение и выполняют конкретную функцию.

Наличие органелл является основой правильного функционирования клетки как элементарной единицы живых организмов. Эти структуры постоянные и не исчезают по мере развития клетки.Выделяют следующие типы органоидов:

  • одномембранные;
  • двумембранные;
  • немебранные.

Исследование обеих групп органоидов заслуживает особенного внимания, поскольку несмотря на собственные маленькие размеры, именно они обеспечивают поддержание всей клетки и организма в целом.

К двумембранным органоидам относят:

  • пластиды (характерны для растительной клетки);
  • клеточное ядро (имеется у эукариот);
  • митохондрии (хранят энергию и окисляют органические вещества).

Двумембранные органоиды называют полуавтономными, и они поддерживают самостоятельность клетки. Прежде всего, это значит, что эти органоиды могут делиться. Новые митохондрии и пластиды образуются путем деления уже существующих клеточных элементов. Эти органоиды имеют собственный геном.

Этот геном имеет кольцевую форму и некоторую степень схожести с геномом бактериальных клеток. Другая часть кодируется в ядре и поступает из цитоплазмы (поэтому митохондрии и пластиды не могут жить свободно, вне клетки). Также эти органеллы имеют свой собственный аппарат синтеза белка, то есть рибосомы.

Эти рибосомы более мелкие, чем в цитоплазме, и также похожи на рибосомы прокариот.

  • Курсовая работа 430 руб.
  • Реферат 230 руб.
  • Контрольная работа 200 руб.

Ввиду наличия такого свойства, рождается теория о том, что двумембранные органеллы, когда – то и были прокариотами. Считается, что они вступили в симбиотические взаимоотношения с древними эукариотическими клетками и поселились внутри них на постоянной основе.

Внешняя мембрана двумембранных органелл сходна по составу с мембранами эукариот, внутренняя сходна с мембранами прокариот. Это согласуется с гипотезой о том, что внешняя мембрана органеллы — это бывшая мембрана пищеварительной вакуоли (фагосомы), где оказался прокариотический симбионт, а внутренняя — это его собственная мембрана.

К одномембранным органоидам относят:

  • аппарат Гольджи;
  • вакуоли;
  • лизосомы;
  • эпс.

Рисунок 1. Строение клетки. Автор24 — интернет-биржа студенческих работ

Функции клеточных органоидов

Также в клеточной системе присутствуют немембранные органоиды, среди которых выделяют клеточный центр, цитоскелет и рибосомы.

Мембранные органеллы обладают одним общим свойством- они образованы из биологических мембран. При этом растительная клетка значительно отличается от животной, чему способствует наличие такого процесса, как фотосинтеза. При этом, как и в растительной, так и в животной клетке для обеспечения бесперебойной работы органелл необходимо обеспечить работу каждого конкретного органоида без сбоев.

Клеточная стенка растительной клетки состоит из целлюлозы и пектинов. Функция данного органоида заключается в защите клетки от неблагоприятных воздействий или обеспечение транспорта веществ внутрь клетки через мембрану.

Что касается ядра, то этот органоид имеет углубления и поры, а также две мембраны.

Определение 2

Ядро – двумембранный органоид, который является основным хранителем наследственной информации клетки, а также позволяет передавать ее при делении клетки. Именно в ядре заложена комплексная генетическая информация, которая реализуется в процессе деления клетки.

В состав ядра также входят ядрышко, кариоплазма, хроматин.

Вакуоль является не чем иным, как слиянием участков эндоплазматической сети. Они регулируют выделение и поступление различных веществ в клетку.

Эндоплазматический ретикулум представляет собой систему каналов гладкого и шероховатого типа. Эндоплазматическая сеть выполняет функцию синтеза веществ и транспорта их внутри клетки.

Рибосомы являются основной органеллой, на которой синтезируется белок. Белок, является основным строительным материалом клетки и поэтому самостоятельно синтезируется клеткой даже в клетках прокариот.

Цитоплазма клетки является постоянным клеточным органоидом и имеет вид полужидкой субстанции с набором органоидов. Цитоплазма обеспечивает взаимодействие между ядром и всеми частями клетки.

Клеточная мембрана образована мембрана двойным слоем липидов, а также белком. У растений снаружи покрыта дополнительно слоем клетчатки. Мембрана обладает свойством избирательной проницаемости и путем нагнетания в клетку ионов поддерживает ее электронейтральность.

Лизосомы являются одно мембранными органоидами, которые осуществляют реакцию «внутриклеточного пищеварения». Лизосомы содержат внутренние ферменты, которые позволяют расщеплять остатки обмена веществ, которые несут токсический эффект для любой клеточной структуры.

Митохондрии являются «энергетическими станциями клетки». В них происходит основное клеточное окисление и накаливается энергия в виде молекул АТФ. Митохондрии имеют собственную ДНК и складки внутренней мембраны или «кресты».

Пластиды также являются двумембранными органоидами и присущи только растительным клеткам. В них имеется собственная ДНК и реализуется процесс фотосинтеза. Также в пластидах находится пигмент хлорофилл, который «заряжается» энергией и позволяет запустить процесс образования кислорода и органических веществ.

Пластиды, в которых находится «зеленый пигмент» хлорофилл, называют хлоропластами. Лейкопласты или бесцветные пластиды накапливают крахмал. Хромопласты запасают каратиноиды.

Что касается клеточного центра, то это органоид состоит из центриолей и микротрубочек и участвует в формировании цитоскелета, также обуславливает систему деления клетки.

Также в клетке формируются различные органоиды движения. К ним относят реснички и жгутики, состоящие из белков. Реснички и жгутики встречаются с равной степенью вероятности.

Таким образом, органеллы клетки являются ее составными частями и можно по-разному рассматривать вопрос их происхождения. Наличие органоидов говорит о целостности клетки и единстве состава органического мира.

Источник: https://spravochnick.ru/biologiya/dvumembrannye_i_odnomembrannye_organoidy/

Урок 5. мембранные органоиды клетки. ядро. прокариоты и эукариоты – Биология – 10 класс – Российская электронная школа

2 мембранные органоиды.  Мембранные органоиды клетки

ВАЖНО!

Органоиды клетки

Органоиды, или Органеллы, – постоянные специфические структуры цитоплазмы, выполняющие определённые функции, необходимые для поддержания жизнедеятельности клетки.

Различают органоиды общего значения и специальные органоиды. Органоиды общего значения имеются во всех клетках и выполняют общие функции. Это – митохондрии, рибосомы, эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, цитоскелет и клеточный центр.

Органоиды специального значения имеются только в клетках какого-то определённого типа и обеспечивают выполнение функций, присущих только этим клеткам.

Мембранные органоиды:

– ядро;

– эндоплазматическая сеть;

– аппарат Гольджи;

– митохондрии;

– лизосомы;

– пластиды;

– вакуоли.

Эндоплазматическая сеть (ЭПС) открыта К. Портером в 1945 году. ЭПС или ЭПР (эндоплазматический ретикулум) – сеть канальцев и цистерн, сложенных мембранами. Различают гранулярную (шероховатую, зернистую) и гладкую (агранулярную) ЭПС.

Гранулярная ЭПС содержит рибосомы на наружной стороне мембраны. Гладкая ЭПС не содержит рибосомы. В скелетных мышцах ЭПС носит название саркоплазматический ретикулум. ЭПС пронизывает всю клетку. Полость ЭПС сообщается с ядром и цитоплазматической мембраной.

На рибосомах гранулярной ЭПС синтезируются секреторные белки, предназначенные для выведения из клетки, а также белки лизосом и внеклеточного матрикса.

Наряду с секреторными белками на гранулярной ЭПС синтезируется большая часть полуинтегральных и интегральных белков. В гладеой ЭПС происходит также синтез мембраны липидов и осуществляется «сборка» компонентов мембраны.

Кроме того, ЭПС, как считают, участвует в образовании пероксисом. Таким образом, гранулярная ЭПС служит «фабрикой» мембран для плазмалеммы, аппарата Гольджи, лизосом и других мембранных структур клетки.

Агранулярная (гладкая) эндоплазматическая сеть представляет собой замкнутую сеть трубочек, канальцев, цистерн.

На цитоплазматической поверхности гладкой ЭПС синтезируются жирные кислоты, большая часть липидов клетки, в том числе почти все липиды, необходимые для построения клеточных мембран. Поэтому гладкую ЭПС нередко называют «фабрикой липидов».

Например, в клетках печени с мембранами гладкого эндоплазматического ретикулума связан фермент, обеспечивающий образование глюкозы из глюкозо-6-фосфата. Эта реакция имеет большое значение в поддержании уровня глюкозы в организме человека.

В организме человека эндоплазматическая сеть особенно хорошо развита в клетках, синтезирующих гормоны, в клетках печени.

Комплекс Гольджи (КГ, или аппарат Гольджи, – пластинчатый комплекс, расположен вблизи ядра, между ЭПС и плазмалеммой.

Его структурно-функциональная единица – диктиосома – представляет собой стопку из 5–20 плоских одномембранных мешочков (цистерн), имеющих диаметр около 1 мкм, внутренние полости которых не сообщаются друг с другом.

Количество таких мешочков в стопке обычно не превышает 5–20, а расстояние между ними составляет 20–25 нм.

Белки, синтезированные на шероховатой эндоплазматической сети, попадают в аппарат Гольджи. Здесь осуществляется химическая модификация транспортируемых белков и их упаковка в специальные пузырьки.

Таким образом, основными функциями комплекса Гольджи являются химическая модификация, накопление, сортировка, упаковка в секреторные пузырьки и транспорт по назначению белков и липидов, синтезированных в ЭПС.

В комплексе Гольджи образуются лизосомы и синтезируются некоторые полисахариды.

Лизосомальная система и пероксисомы

Лизосомы – мембранные органеллы клеток животных и грибов, содержащие гидролитические ферменты и осуществляющие гидролитическое расщепление макромолекул (внутриклеточное пищеварение).

Лизосомы представляют собой окружённые одинарной мембраной пузырьки, размеры которых в клетках животных колеблются от 0,2 до 0,5 мкм.

В лизосомах содержится не менее 60 гидролитических ферментов, которые расщепляют все основные классы органических макромолекул.

Все ферменты лизосом активны лишь в кислой среде при значениях pH, близких 5,0. Количество лизосом в разных клетках варьирует от единичных до нескольких сотен, как например, в фагоцитах.

Завершающие этапы процесса внутриклеточного переваривания веществ, поглощённых клеткой, осуществляются в лизосомах.

Лизосомы с помощью своих ферментов могут разрушать не только отдельные органеллы или клетки, но и целые органы (автолиз). Например, в процессе онтогенеза лягушки с помощью ферментов лизосом лизируются хвост и жабры головастика, а образующиеся при этом продукты распада используются для формирования органов взрослого животного.

Митохондрии – крупные мембранные органоиды клетки, которые можно различить в световой микроскоп. Митохондрии присутствуют во всех эукариотических клетках человека, кроме эритроцитов.

Они имеют обычно округлую, удлиненную или нитевидную формы. Количество митохондрий в клетке колеблется в широких пределах (от 1 до 100 тыс. и более) и зависит от потребностей клетки в энергии. Митохондрии имеют наружную и внутреннюю мембраны.

На внутренней поверхности увеличенного фрагмента кристы видны небольшие выпуклости, обращенные в митохондриальный матрикс, которые содержат ферментные системы, обеспечивающие процессы дыхания. Наружная мембрана гладкая и по своему составу сходна с плазмалеммой.

В матриксе содержатся кольцевая молекула митохондриальной ДНК (мтДНК), различные включения, а также молекулы мРНК, транспортной РНК (тРНК) и рибосомы, сходные по строению с рибосомами бактерий. Здесь же располагаются ферменты, превращающие пируват и жирные кислоты в ацетил-КоА, и ферменты реакций цикла Кребса.

Митохондриальная ДНК имеет не линейную, как в хромосомах ядра, а кольцевую форму. функция митохондрий – синтез АТФ, основного источника энергии для обеспечения жизнедеятельности клетки. Поэтому митохондрии называют «энергетическими станциями» клетки.

Пластиды

Пластиды – это органоиды клеток растений и некоторых фотосинтезирующих простейших. У большинства животных и грибов пластид нет.

Пластиды делятся на несколько типов: хлоропласты, хромопласты, лейкопласты. Наиболее важный и известный – хлоропласт, содержащий зелёный пигмент хлорофилл, который обеспечивает процесс фотосинтеза.

Хлоропласты

Хромопласты

Лейкопласты

Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.

Строение пластид

Пластиды относятся к двумембранным органоидам, у них есть внешняя и внутренняя мембраны.

Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры, как тилакоиды, граны (стопки тилакоидов), ламелы – удлинённые тилакоиды, соединяющие соседние граны. Внутреннее содержимое пластид обычно называют стромой. В ней, помимо прочего, находятся крахмальные зёрна.

Считается, что в процессе эволюции пластиды появились аналогично митохондриям – путём внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу.

Поэтому пластиды считают полуавтономными органеллами. Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат.

Часть генов, управляющая их функционированием, находится как раз в ядре.

Ядро

Ядро – важнейшая часть эукариотической клетки. Оно состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

1. Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК.

3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

4. Хроматин (хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.

Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информационная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).

Геном, генотип и кариотип

Источник: https://resh.edu.ru/subject/lesson/3847/main/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.